Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Med Virol ; 94(9): 4181-4192, 2022 09.
Article in English | MEDLINE | ID: covidwho-1844141

ABSTRACT

Cleavage of the severe respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein has been demonstrated to contribute to viral-cell fusion and syncytia formation. Studies have shown that variants of concern (VOC) and variants of interest (VOI) show differing membrane fusion capacity. Mutations near cleavage motifs, such as the S1/S2 and S2' sites, may alter interactions with host proteases and, thus, the potential for fusion. The biochemical basis for the differences in interactions with host proteases for the VOC/VOI spike proteins has not yet been explored. Using sequence and structure-based bioinformatics, mutations near the VOC/VOI spike protein cleavage sites were inspected for their structural effects. All mutations found at the S1/S2 sites were predicted to increase affinity to the furin protease but not TMPRSS2. Mutations at the spike residue P681 in several strains, such P681R in the Delta strain, resulted in the disruption of a proline-directed kinase phosphorylation motif at the S1/S2 site, which may lessen the impact of phosphorylation for these variants. However, the unique N679K mutation in the Omicron strain was found to increase the propensity for O-linked glycosylation at the S1/S2 cleavage site, which may prevent recognition by proteases. Such glycosylation in the Omicron strain may hinder entry at the cell surface and, thus, decrease syncytia formation and induce cell entry through the endocytic pathway as has been shown in previous studies. Further experimental work is needed to confirm the effect of mutations and posttranslational modifications on SARS-CoV-2 spike protein cleavage sites.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Glycosylation , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
2.
Anal Bioanal Chem ; 413(29): 7295-7303, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1274805

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a serious threat to human health all over the world. The development of effective vaccines has been focusing on the spike (S) glycoprotein, which mediates viral invasion to human cells through its interaction with the angiotensin-converting enzyme 2 (ACE2) receptor. In this work, we perform analytical characterization of N- and O-linked glycosylation of the SARS-CoV-2 S glycoprotein. We explore the novel use of dual-functionalized titanium (IV)-immobilized metal affinity chromatography (Ti-IMAC) material for simultaneous enrichment and separation of neutral and sialyl glycopeptides of a recombinant SARS-CoV-2 S glycoprotein from HEK293 cells. This strategy helps eliminate signal suppression from neutral glycopeptides for the detection of sialyl glycopeptides and improves the glycoform coverage of the S protein. We profiled 19 of its 22 potential N-glycosylated sites with 398 unique glycoforms using the dual-functional Ti-IMAC approach, which exhibited improvement of coverage by 1.6-fold compared to the conventional hydrophilic interaction chromatography (HILIC) glycopeptide enrichment method. We also identified O-linked glycosylation site that was not found using the conventional HILIC approach. In addition, we reported on the identification of mannose-6-phosphate (M6P) glycosylation, which substantially expands the current knowledge of the spike protein's glycosylation landscape and enables future investigation into the influence of M6P glycosylation of the spike protein on its cell entry.


Subject(s)
Glycopeptides/isolation & purification , N-Acetylneuraminic Acid/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Sequence , Chromatography, Liquid/methods , Glycopeptides/chemistry , HEK293 Cells , Humans , Mannosephosphates/chemistry , Static Electricity , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL